ACKNOWLEDGEMENTS This research is financially supported by the Ministry of Economy, Transport, Agri- culture and Viticulture of Rhineland-Palatinate (project: Establishment of a center for method- ology and analysis for the scientific qualifica- tion of a new generation of carbon-based re- fractory ceramics for the use in modern steel in- dustry CARBONARA) and the funding line “Forschungskollegs Rheinland-Pfalz” (Max- von-Laue Institute of Advanced Ceramic Ma- terial Property Studies CerMaProS) of the Ministry of Science and Health of Rhineland- Palatinate. Special thanks to Dr. Uwe Käfer from the Cooperation Group of Comprehensive Molecular Analytics at the Helmholtz Zentrum Munich for the mass spectrometry measure- ments. REFERENCES (1) Buchebner, G. Jansen, H. Magnesiakohlenstoffsteine. In Praxishandbuch Feuerfeste Werkstoffe: Aufbau - Eigenschaften - Prüfung, 5. Auflage Routschka, G., Wuthnow, H., Eds. Vulkan- Verlag: Essen, 2011 109–118. (2) Andreikov, E. I. Amosova, I. S. Pervova, M. G. Determining the content of polycyclic ar- omatic hydrocarbons in industrial samples of coal tar and pitch. Coke Chem. 2008, 51, 321– 325. (3) Kershaw, J. R. Black, K. J. T. Structural characterization of coal-tar and petroleum pitches. Energy Fuels 1993, 7, 420–425. (4) Gargiulo, V. Apicella, B. Alfè, M. Russo, C. Stanzione, F. Tregrossi, A. Amoresano, A. Millan, M. Ciajolo, A. Structural Charac- terization of Large Polycyclic Aromatic Hydro- carbons. Part 1: The Case of Coal Tar Pitch and Naphthalene-Derived Pitch. Energy Fuels 2015, 29, 5714–5722. (5) Gargiulo, V. Apicella, B. Stanzione, F. Tregrossi, A. Millan, M. Ciajolo, A. Russo, C. Structural Characterization of Large Polycy- clic Aromatic Hydrocarbons. Part 2: Solvent- Separated Fractions of Coal Tar Pitch and Naphthalene-Derived Pitch. Energy Fuels 2016, 30, 2574–2583. (6) Russo, C. Ciajolo, A. Stanzione, F. Tregrossi, A. Oliano, M. M. Carpentieri, A. Apicella, B. Investigation on chemical and structural properties of coal- and petroleum-de- rived pitches and implications on physico- chemical properties (solubility, softening and coking). Fuel 2019, 245, 478–487. (7) Andersson, J. T. Achten, C. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up- to-Date Use of PACs for Environmental Pur- poses. Polycyclic Aromatic Compounds 2015, 35, 330–354. (8) Zhang, W. Müllen, K. Analyzing solid fos- sil-fuel pitches by a combination of Soxhlet ex- traction and Fourier transform ion cyclotron resonance mass spectrometry. Carbon 2020, 167, 414–421. (9) Käfer, U. Gröger, T. Rüger, C. P. Czech, H. Saraji-Bozorgzad, M. Wilharm, T. Zim- mermann, R. Direct inlet probe - High-resolu- tion time-of-flight mass spectrometry as fas technique for the chemical description of com- plex high-boiling samples. Talanta 2019, 202, 308–316. (10) Cho, Y. Kim, Y. H. Kim, S. Planar limit- assisted structural interpretation of saturates/ar- omatics/resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry 2011, 83, 6068–6073. (11) Zhang, W. Andersson, J. T. Räder, H. J. Müllen, K. Molecular characterization of large polycyclic aromatic hydrocarbons in solid pe- troleum pitch and coal tar pitch by high resolu- tion MALDI ToF MS and insights from ion mobility separaration. Carbon 2015, 95, 672– 680.
Previous Page