35 American Ceramic Society Bulletin, Vol. 100, No. 8 | www.ceramics.org Celebrating 100 years chemistries, endeavors to optimize param- eters for both focused ion beam-assisted APT specimen preparation and data collection are in progress.20 Especially, we foresee that by using plasma- or cryo- focused ion beam, undesirable ion-matter interactions beyond intended milling, which often induce microstructural defects, can be minimized during an APT tip preparation stage, thereby allowing APT to retain 3D data as close as that of an original specimen. Findings from the spatially improved microstructural analysis combined with enhanced optical metrology tools for GRIN characterization will not only reveal further insight into the material system’s response to laser and thermal treatments, but it will also refine the pre- dictive quantitative process–structure– property relationship, facilitating the design, fabrication, and expanded use of GRIN optical components. Acknowledgments This work was supported in part by the Defense Advanced Research Projects Agency under Air Force Research Laboratory contract FA8650- 12-C-7225 through the M-GRIN Tech Area 2 program. The authors gratefully acknowledge the role of our partners in this effort, including Theresa S. Mayer at Purdue University, Clara Rivero- Baleine at Lockheed Martin Corporation, Ilya Mingareev at Florida Institute of Technology, Carlo G. Pantano at Pennsylvania State University, Hugues Francois-Saint-Cyr at Thermo Fisher Scientific, Isabelle Martin at CAMECA Inc., Juejun Hu at Massachusetts Institute of Technology, and Martin C. Richardson at the University of Central Florida. We also recognize the significant contributions of the numerous former students and research staff who contributed to this work. About the authors Myungkoo Kang and Kathleen A. Richardson are research scientist and professor, respectively, in CREOL, the College of Optics and Photonics at the University of Central Florida. Contact Kang at myungkoo@creol.ucf.edu and Richardson at kcr@creol.ucf.edu. References 1 E. Hecht, Optics, Addison-Wesley, Reading, MA 1998. 2 G. Zuccarello, D. Scribner, R. Sands, and L. J. Buckley, “Materials for bio-inspired optics,” Adv. Mater. 14, 1261 (2002). 3 https://en.wikipedia.org/wiki/Iris_(anat- omy)#/media/File:Schematic_diagram_of_ the_human_eye_en.svg (Wikipedia page for Human eye, Open source, Accessed in June 2021). 4 P. Nogueira, M. Zankl, H. Schlattl, and P. Vaz, “Dose conversion coefficient for monoenergetic electrons incident on a realis- tic human eye model with different lens cell populations,” Phys. Med. Biol. 56, 6919 (2011). 5 B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imag- ing in vitro,” Vision Res. 42, 1683 (2002). 6 J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, Gradient Index Optics at DARPA, The Institute for Defense Analyses, Alexandria, VA 2014. 7 D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035 (1980). 8 K. Richardson, M. Kang, L. Sisken, A. Yadav, S. Novak, A. Lepicard, I. Martin, H. Francois-Saint-Cyr, C. M. Schwarz, T. S. Mayer, C. Rivero-Baleine, A. J. Yee, and I. Mingareev, “Advances in infrared GRIN materials: a review,” Opt. Eng. 59, 112602 (2020). 9 M. Kang, L. Sisken, J. Cook, C. Blanco, M. C. Richardson, I. Mingareev, and K. Richardson, “Refractive index patterning of infrared glass ceramics through laser-induced vitrification,” Opt. Mater. Express 8, 2722 (2018). 10 M. Kang, L. Sisken, C. Lonergan, A. Buff, A. Yadav, C. Goncalves, C. Blanco, P. Wachtel, J. D. Musgraves, A. V. Pogrebnyakov, E. Baleine, C. Rivero-Baleine, T. S. Mayer, C. G. Pantano, and K. A. Richardson, “Monolithic chalcogenide opti- cal nanocomposites enable infrared system innovation: Gradient refractive index (GRIN) optics,” Adv. Opt. Mater. 8, 2000150 (2020). 11 M. Kang, A. M. Swisher, A. V. Pogrebnyanov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L. B. Glebov, M. C. Richardson, C. Rivero- Baleine, C. G. Pantano, T. S. Mayer, and K. Richardson, “Ultra-low dispersion mul- ticomponent thin film chalcogenide glass for broadband gradient index optics,” Adv. Mater. 30, 1803628 (2018). 12 I. Mingareev, M. Kang, M. Truman, J. Qin, G. Yin, J. Hu, C. M. Schwarz, I. B. Murray, M. C. Richardson, and K. A. Richardson, “Spatial tailoring of the refractive index in infrared glass-ceramic films enabled by direct laser writing,” Opt. Laser Technol. 126, 106058 (2020). 13 D. Gibson, S. S. Bayya, V. Q. Nguyen, J. D. Myers, E. F. Fleet, J. S. Sanghera, J. Vizgaitis, J. P. Deegan, and G. Beadie, “Diffusion-based gradient index optics for infrared imaging,” Opt. Eng. 59, 112604 (2020). 14 S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct electrospray printing of gra- dient refractive index chalcogenide glass films,” ACS Appl. Mater. Interfaces 9, 26990 (2017). 15 P. Sinai, “Correction of optical aberrations by neutron irradiation,” Appl. Opt. 10, 99 (1971). 16 L. Karam, F. Adamietz, D. Michau, C. Goncalves, M. Kang, R. Sharma, G. S. Murugan, T. Cardinal, E. Fargin, V. Rodriguez, K. A. Richardson, and M. Dussauze, “Electrically polarized amorphous sodo-niobate film competing with crystal- line lithium niobite second order optical response,” Adv. Opt. Mater. 8, 2000202 (2020). 17 C. M. Schwarz, S. M. Kuebler, C. Rivero- Baleine, B. Triplett, M. Kang, Q. Altemose, C. Blanco, K. A. Richardson, Q. Du, S. Deckoff-Jones, J. Hu, Y. Zhang, Y. Pan, and C. Rios, “Structurally and morphologically engineered chalcogenide materials for optical and photonic devices,” J. Opt. Microsyst. 1, 013502 (2021). 18 G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass forma- tion and properties of chalcogenides in a GeSe 2 -As 2 Se 3 -PbSe system,” J. Am. Ceram. Soc. 90, 1500 (2007). 19 L. Sisken, M. Kang, J. M. Veras, C. Smith, A. Buff, A. Yadav, D. McClane, C. Blanco, C. Rivero-Baleine, T. S. Mayer, and K. Richardson, “Infrared glass ceramics with multi-dispersion and gradient refractive index attributes,” Adv. Funct. Mater. 29, 1902217 (2019). 20 M. Kang, I. Martin, R. Sharma, C. Blanco, S. Antonov, T. J. Prosa, D. J. Larson, H. Francois-Saint-Cyr, and K. A. Richardson, “Unveiling true 3-D nanoscale microstructur- al evolution in chalcogenide nanocomposites: a roadmap for advanced infrared functional- ity,” Adv. Opt. Mater. 9, 2002092 (2021). 100
Previous Page Next Page